Amplification-free sensing of circulating nucleic acid biomarkers in blood:
A minimally invasive tool for early diagnosis of cancer
Molecular Bioengineering

How an academically trained chemist (or molecular bioengineer) working in a Bioengineering department can address public health problems and engineer solutions for cancer
Our goal: Diagnose more cancers better and earlier

Increasing survival rate by treating early, only if necessary and with the best suited drugs requires...

- Highly specific biomarkers (or combination of biomarkers)
- Non-invasive tests for widespread public screening (affordable, robust and easy-to-use)
Prostate cancer: A case study

Prostate cancer is currently diagnosed too late

In the UK only, around 35,000 new cases diagnosed per year, around a quarter would be already metastatic - but that's only in the UK.

And non-invasive diagnostic blood tests lack specificity

Current diagnosis results from the presentation of clinical symptoms such as urine hesitancy, erectile dysfunction and decreased urination flow, whereupon a plasma or serum sample’s prostate specific antigen (PSA) concentration will be assessed. Typically, results of 4ng/ml or above result in a prostate biopsy to confirm a neoplasm. However, it is reported that over 75% of positive PSA tests are in fact false positives.
There is currently no screening programme for prostate cancer in the UK [...] Instead of a national screening programme, there is an informed choice programme on prostate cancer risk management. It aims to give men good information on the pros and cons of a PSA test.

Private healthcare offers patients a prostate cancer screening service.

ProstateCheck: £360
Follow-up appointments range from £200 to £250
Could eliminate 30-50% of all unnecessary biopsies
Our answers to an unsolved problem

- Minimal sample volume
- Automated sample processing
- Benchtop analysis
- High specificity
- Low cost
Our Target: Circulating micro RNAs

Need for reliable, highly sensitive, specific and quantitative sensing technology

• Secretion in body fluids (saliva, serum, plasma...)

Ideal for minimally invasive diagnosis

BUT

• Low concentration in these cell-free fluids

• miRNAs have very similar sequences
The gold standard: **RT-qPCR and Taqman probes**

- Taqman probes are expensive and often unreliable (lack of specificity, reproducibility, and strong background fluorescence).
- Double amplification (prone to contamination and source of errors).
Our Strategy: Oligonucleotide-templated reactions

Using a DNA or RNA strand as a template to catalyse an otherwise unfavourable reaction of formation of a fluorescent dye

Our scaffold: Peptide Nucleic Acids (PNAs)
Our probe-heads: A toolbox of multicolour dyes

Possibility of multiplexed (multicolour) analysis

Our Chemistry: Reaction of fluorescence unquenching

Quenched fluorescence (by PET)

PNA\textsubscript{1} DNA or RNA template PNA\textsubscript{2}

Strong Fluorescence

Emission $\lambda_{\text{max}} = 520-530$ nm

Proof-of-concept study

MiR-141 and miR-375: biomarkers for prostate cancer (high levels compared to healthy controls)

MiR-132: biomarker for ovarian cancer (low levels compared to healthy controls)
In vitro validation

Quantitative detection
Relatively fast

Specific detection

Specificity at the single nucleotide level (but position-dependent)

Implications for miR141 and miR375 sensing?

G. Metcalf, A. Shibakawa, H. Patel, A. Sita-Lumsden, A. Zivi, N. Rama, C.L. Bevan, S. Ladame
Anal. Chem., 2016, accepted
miR375: No other miR with sequence homology >75%

miR141: 90.90% homology (20/22bp) with miR-200a

miR-141 sequence (5’ to 3’): UAA CAC UGU CUG GUA A
miR-200a sequence (5’ to 3’): UAA CAC UGU CUG GUA A

Likely to detect both miR141 and miR200a simultaneously
The issue of **Sensitivity**

LITTLE and CONTRADICTORY information on endogenous miRNA concentrations available

highly dependent on the sample has been processed and analysed

PRACTICAL APPROACH:

Is our technology FIT-FOR-PURPOSE?

- Human serum
- Total RNA extraction
- RT-qPCR
- PNA probes

Picomolar? Femtomolar? Attomolar?
Validation on Pca samples

- **RN**: Remission, post-prostate removal
- **RY**: Remission, prostate gland present
- **AL**: Localised advanced tumour
- **AM**: Metastatic advanced tumour

miR-141

- Technology
- fit-for-purpose

- Amplification-free Detection

- Good correlation with RT-qPCR data

miR-375

- PCa diagnosis and grading

Cross-validation: ovarian vs prostate cancer

- Can detect both increasing and decreasing levels of miRNAs
- miR141 behaves as reference miRNA for ovarian Cancer
Why no amplification required?

Mature vs pre-miR

PNA probes can detect mature miRNAs but also their precursors
Clot blood – leave upright at RT (0.5-1h)
Collect supernatant - aspirate
Aliquote (1ml/cryovial)
Freeze at -80°C
Add TRIzol® and chloroform to serum (5min)
Precipitate RNA from supernatant with isopropanol (1min)
Wash three times with 75% ethanol
Resuspend RNA in nuclease-free ddH₂O
Heat shock 55-60°C (10min)
Can we avoid RNA extraction?
Vision for the future

• A technology of broad applicability, also to cancers with low survival rates (lung, pancreatic, oesophageal)

• A versatile technology suitable for the detection of any circulating nucleic acid biomarkers (combining miRNA, cell-free DNA and SNP detection in one device for improved specificity).

 • Minimally invasive (simple blood test)
 • Highly automated (minimal sample processing)
 • Low production cost (probes costing <1p per test)
 • Amenable to incorporation in portable devices (isothermal, no enzyme, fast)
Acknowledgements

Mr Gavin Metcalf (Poster 029)
Miss Dana Al Sulaiman (Poster 002)
Mr Hinesh Patel
Mr Akifumi Shibakawa
Miss Isobel Steer
Miss Roberta Menezes (Poster 013)
Dr Jean-Francois Bartolo
Dr Mazen Sleiman

Collaborators:
Prof. Charlotte Bevan (ICL)
Prof. Bob Brown (ICL)
Prof. Charles Coombes (ICL)
Prof. Valerie Taly (France)