Electrochemical Sensing of Cancer Biomarkers

BATH

Pedro Estrela

Coordinator of the Marie Curie ITN PROSENSE Department of Electronic & Electrical Engineering University of Bath, UK

Contents

- DNA Aptamers
- Aptamer Self-Assembled Monolayers (PSA)
 - Binary SAM
 - Sulfo-betaine moiety
- Aptamer within Molecular Imprinted Polymers (PSA)
- Aptamer on polypyrrole
 - PEG ANTA/Cu²⁺ (AMACR)
 - Direct linking (PSA)
- microRNAs
 - PNA-AuNP

DNA Aptamers

- DNA aptamers are single-stranded DNA that can bind to their targets with high affinity and specificity by undergoing conformational changes
- DNA aptamers have a number of advantages over antibodies, in particular with regards to their lower cost, easy manipulation and potential for controlled chemical attachment to electrodes

DNA Aptamers

• Different DNA aptamers have different secondary structures

A. Direct immobilisation (binary SAM, thiol chemistry)

 Detection via electrochemical impedance spectroscopy (EIS) the presence of redox markers

 Glycosylation – post-translational modification that attaches glycans (carbohydrate chains) to proteins, lipids, or other organic molecules
Glycoprofiling – determining the glycan composition of the protein, cell, tissue, etc
Aberrant glycosylation – characteristic for tumorigenesis, indication of cancer → studying structure of the oncomarker, rather than its level (PSA)

HEALTHY DONOR

Lectins – proteins that react specifically with glycosidic residues of other molecules, act as a biorecognition element

Jolly et al., Biosens Bioelectron 79 (2016) 313

DNA aptamers / Lectins

Aptamer SAMs

B. Immobilisation on self assembled gold nanoparticles

Aptamer SAMs

• High non-specific binding with mercapto-hexanol (MCH) based SAM

• Alternative: Use of antifouling surface chemistry (Sulfo betaine moiety)

Mercaptoundecanoic acid

Aptamer SAMs

C. Use of Antifouling surface chemistry (Sulfo-betaine moiety)

covalent attachment of amine terminated aptamers

Jolly et al., Sens. Actuators B 209 (2015) 306

Aptamer SAMs

C. Use of Antifouling surface chemistry (Sulfo-betaine moiety)

Jolly et al., Sens. Actuators B 209 (2015) 306

Aptamer SAMs

• Reduction of non-specific binding of HSA to less than 2%

Increased sensitivity due to combined effect of
linker length and sulfo-betaine
-40

Detection down to 1 ng/mL (60 times lower than MCHbased surface chemistry)

UNIVERSITY OF

Jolly et al., Biosens. Bioelectron. 75 (2016) 188

Aptamer MIPs

• Hybrid DNA aptamer / molecular imprinted polymer

Advantages:

- DNA aptamers used for controlled surface chemistry
- Resistant to stringent fabrication process: polymerisation, washing with 5% SDS and 5% acetic acid

Rebinding of PSA and control protein

Aptamer MIPs

• Increased sensitivity which can be attributed to imprinting effects

• Potentially minimise nuclease degradation

Tamboli et al., submitted

Aptamer MIPs: BioFET in serum

Detection of low levels of PSA in serum

AMACR (α-methylacyl-CoA racemase)

- In mammalian cells, the enzyme is responsible for converting (2R)methylacyl-CoA esters to their (2S)-methylacyl-CoA epimers
- Biomarker for prostate cancer with high sensitivity of 77.8% and specificity of 80.6%
- It is still a tissue biomarker but studies have shown its presence in blood in the range of µg/mL and fg/mL in urine samples
- Have high potential to complement PSA screening in identifying patients with clinically significant prostate cancer, especially those with intermediate PSA levels

Jolly et al., submitted

Aptamer on polypyrrole

Capture of AMACR

BATH

UNIVERSITY OF BATH

Specificity study: 4% Human Serum Albumin (HSA)

Polyethylene glycol (PEG) based surface chemistry

< 3% change in signal on incubation with 4 % HSA for 30 min

Specificity study: other prostate cancer biomarkers

Negligible signal change with other prostate cancer biomarkers (all proteins used were of same concentration 100 nM)

Detection in human plasma samples

- Detection via square wave voltammetry
- Broad range from 0.1 fM to 10 nM
- Detection limit down to 1.4 fM

- Potential to develop multiplexed platform
- Copper can be replaced with other metal ions (nickel, zinc, etc.)

Aptamer on polypyrrole (direct)

Functionalisation of polypyrrole with carboxylate groups

- One-step easy and fast deposition of probes bearing amines
- Detection method: EIS without any redox marker

Electrochemical deposition of amine terminated aptamers

Capture of PSA

• Negligible signal change with a random DNA sequence

microRNAs

- Small (18-25 nt long) non-coding RNAs that are involved in regulation of gene expression (post transcriptional regulation)
- Increasing reports on role of miRNAs in oncogenic processes such as proliferation, apoptosis, differentiation and development of androgen independence

- Consequently, studies show that the altered levels of miRNA in blood can act like finger prints of cancer (diagnosis, prognosis and also the stage of the cancer)
- Different miRNAs are associated with different diseases and also published for essentially all cancer forms including prostate cancer

PNA

DNA-DNA interactions:

- due to charge screening / counterion condensation, change in net charge upon hybridisation is small
- formation of duplex "thickens" DNA layer, increasing electrostatic barrier to [Fe(CN)₆]^{3-/4-} in-between DNA sites

PNA-DNA interactions:

- initial probe layer has no electrostatic barrier
- hybridisation with DNA results in large increase in electrostatic barrier

- Electrochemical Impedance Spectroscopy (EIS) was used in the presence of redox marker to confirm the concept
- PNA creates physical barrier to negatively charged redox couple in solution: [Fe(CN)₆]^{3-/4-}

- Electrochemical Impedance Spectroscopy (EIS) was used in the presence of redox marker to confirm the concept
- PNA creates physical barrier to negatively charged redox couple in solution: [Fe(CN)₆]^{3-/4-}
- Charge transfer resistance (R_{ct}) significantly increased with target miRNA by increasing the electrostatic barrier

- Electrochemical Impedance Spectroscopy (EIS) was used in the presence of redox marker to confirm the concept
- PNA creates physical barrier to negatively charged redox couple in solution: [Fe(CN)₆]^{3-/4-}
- Charge transfer resistance (R_{ct}) significantly increased with target miRNA by increasing the electrostatic barrier
- Charge transfer resistance (R_{ct}) significantly decreased with AuNPs

CONTROLS

- AuNPs do not interact with SAM (red curve) (~2%)
- Negligible interactions with non-complementary DNA (1.08%) and also with BSA (Bovine Serum Albumin, 2.3%)

Jolly et al., submitted

Non-Faradaic EIS: PNA with AuNPs

- Impedance measurements without redox markers
- Very high impedance is observed

$$C^* \equiv -1/j\omega Z$$
$$C' = \frac{-Z''}{\omega |Z|^2}$$

$$C^{\prime\prime} = \frac{-Z^{\prime}}{\omega |Z|^2}$$

Z' : Real Part of impedance **Z''** : Imaginary part of impedance $|\mathbf{Z}|^2$: $((\mathbf{Z'})^2 + (\mathbf{Z''})^2)$ Jolly et al., submitted

Non-Faradaic EIS: PNA with AuNPs

Cole - Cole plot Nyquist plot 3500 0.15 - PNA + miRNA (100 nM) 3000-- Attachment of AuNPs 2500. 0.10-- Z " (kx(03A9)) -C" (µF) 2000 1500 0.05 -1000 - PNA 500 PNA + miRNA (100 nM) Attachment of AuNPs 0.00 0 1000 1400 200 400 600 800 1200 0.1 0.2 0.3 0 0.0 0.4 0.5 Z'(kx(03A9)) C' (µF)

Monitoring non-Faradaic processes

Non-Faradaic EIS: PNA with AuNPs

Potential detection down to 1fM of complementary miRNA strand

Non-Faradaic EIS: PNA with AuNPs

gold nanoparticles

100 nM non complementary miRNA target

Control experiments output

- Around 1.5% capacitance change with just AuNPs was observed
- With non-complementary miRNA (100 nM), around 2% change was recorded
- With 100 nM of miRNA sequence with 2 mismatch, around 2.5% change was recorded
- With 1 mismatch sequence (100 nM), around 20% change was observed

Jolly et al., submitted

Amperometric: PNA with AuNPs

Jolly et al., submitted

Amperometric: PNA with AuNPs

- Square wave voltammetry was used to monitor ferrocene peaks for different concentrations of miRNA
- Provision of dual detection technique

Dose Response

Control experiments output

UNIVERSITY OF

- Around 1 µA peak current with just AuNPs
- With non-complementary miRNA (100 nM), around 1.2 μA
- With 100 nM of miRNA sequence with 2 mismatch, around 1.6 µA was recorded
- With 1 mismatch (100 nM) sequence, around 7 µA was observed

The near-future...

Potentiometric Impedimetric Amperometric

Antibodies Antibody fragments Peptides Affimers DNA aptamers MIPs

Lectins

DNA, PNA, LNA

fPSA PSA AMACR HER2 ...

miRNAs

Acknowledgments

Biosensors Group: Pawan Jolly, Anna Miodek

Dept Pharmacy & Pharmacology, Uni Bath: Matthew Lloyd

Cardiff University: Vibha Tamboli, Chris Allender, Jenna Bowen

University of São Paulo: Marina Batistuti, Marcelo Mulato

Slovak Academy of Sciences:

Peter Kasák, Jan Tkáč

National Taiwan University: Deng-Kai Yang, Lin-Chi Chen

p.estrela@bath.ac.uk go.bath.ac.uk/biosensors Marie Curie Initial Training Network "Cancer Diagnosis: Parallel Sensing of Prostate Cancer Biomarkers" (PROSENSE) www.prosense-itn.eu

Latest issue of Essays in Biochemistry

Covering an introduction to biosensors, discussion of analytical biosensors, and applications of biosensors, including in the biomedical field

Guest edited by Pedro Estrela, University of Bath, U.K.

Available at essays.biochemistry.org/content/60/1

PROSENSE Conference on Prostate Cancer Diagnosis

Bath, 12-13 September 2016

Deadline for abstracts: 31 July 2016

BioNanoScience: topic Issue on Prostate Cancer Diagnosis

Deadline for papers: 23 September 2016

Follow links on http://go.bath.ac.uk/biosensors